【摘 要】
:
利用随机变量序列自正则和的中偏差理论,研究了随机变量阵列自正则和的单对数律,推广了已有的结果.作为应用,给出了随机变量阵列t-统计量的单对数律.
【机 构】
:
暨南大学统计学系,广东 广州510630;广州华商学院数据科学学院,广东 广州511300
论文部分内容阅读
利用随机变量序列自正则和的中偏差理论,研究了随机变量阵列自正则和的单对数律,推广了已有的结果.作为应用,给出了随机变量阵列t-统计量的单对数律.
其他文献
利用P-集合与它的动态特性,定义了内、外P-对偶信息及P-对偶属性信息.利用这些概念,提出了P-信息依赖度、依赖系数,P-对偶信息依赖度、依赖系数;讨论了内、外P-属性信息依赖定理,P-对偶信息获取-发现定理及内潜藏原理,得出P-对偶信息依赖-获取两个准则.最后给出P-对偶信息的应用.
采用地面加密雨量计观测资料,以1h、3h、6h、12 h和24 h等多个时间尺度分别评估了全球降水观测GPM(Global Precipitation Measurement)计划降水产品IMERG(Integrated Multi-satellite Retrievals for GPM)对台风“妮妲”降水中小雨、中雨、大雨和暴雨等不同量级降水的估计能力,主要结论如下:(1)降水累积时长会影响IMERG降水产品的估计精度.随着降水累计时长的增加,IMERG与地面雨量计观测结果的一致性加大,相对偏差和偏差
考虑有限链上的保序且降序部分变换半群设PCn,通过对其幂等元的分析,得到了半群PCn的极大子半群和极大幂等元生成子半群的完全分类.
利用内外迭代技术,构造了广义绝对值方程的Picard-GPSS迭代法,详细研究了收敛性理论.数值实验结果表明新方法的高效性,并且该方法在内迭代步数和CPU时间上均优于Picard-HSS迭代法.
利用积分平均技巧和Riccati变换,获得了一类带阻尼项的非线性分数阶微分方程所有解振动的若干新的充分判据,并通过例子阐述主要结果的有效性.
讨论在dim Ker L=2共振情形下三阶m-点边值问题({u?(t)=f(t,u(t),u\'(t),u″(t))+e(t),t∈[0,1],u(0)=∑m-2i=1αiu(ξi),u(1)=∑n-2j=1βju(ηj),u″(0)=0)的可解性,这里函数f:[0,1]×R3→R满足Carathéodory条件,e:[0,1]→R∈L1[0,1],αi,βj∈R,ξi,ηj∈(0,1),0<ξ1<ξ2<…<ξm-2<1,0<η1<η2<…<ηn-2<1并且满足条件(C1):∑m-2i=1αi=1,∑
针对二维Cahn-Hilliard方程,使用自适应移动网格,建立有限元数值模型.由于Cahn-Hilliard方程在初期变换迅速,且在后期变化缓慢,使用基于移动网格偏微分方程(moving mesh partial differential equation,MMPDE)的移动网格准则能够更好地捕捉相变的过程.在移动网格上,对空间方向使用线性有限元离散,对时间方向使用五阶RadauⅡA格式离散.数值结果表明在移动网格下的数值解能够很好地保持原方程固有的质量守恒与能量稳定定律,提高计算效率,验证了该方法的有
设S是环,H(S)是S上的四元数环.通过研究H(S)上的Jordan中心化子和Lie中心化子,得到Lie中心化子是标准型的充分条件,证明在某特定假设下,H(S)上的每个Jordan中心化子是中心化子.此外,给出H(S)上的可加映射?是中心化子的几个等价条件.
利用环绕定理和山路定理,研究一类分数阶变系数Dirichlet边值问题非平凡弱解的存在性.在变分框架下,此类问题的研究多是需要Ambrosetti-Rabinowtiz条件,给出了比Ambrosetti-Rabinowtiz条件弱的条件.
利用分析方法和技巧研究了Lupas-King型算子列的渐近性质,同时利用函数的分解技巧并结合区间分割技术研究了Lupas-King型算子列对导函数为局部有界函数的点态估计.