论文部分内容阅读
针对传统的高光谱影像稀疏表达分类模型忽略像元间的内部结构关系且运算效率较低,提出多观测向量的稀疏表达模型来研究高光谱影像分类.该模型引入平衡参数来控制各权重系数向量的稀疏度,通过最小化L2范数约束的重构误差来求解所有测试像元的稀疏系数向量.基于两个高光谱数据集,对比5种常规分类器的分类结果来验证提出的方法.实验结果表明,多观测向量的稀疏表达分类模型在计算效率第二的同时能够得到最高分类精度.