论文部分内容阅读
针对双向长短时记忆神经(BiLSTM)模型训练时间长、不能充分学习文本上下文信息的问题,提出一种基于BiGRU-attention的文本情感分类模型。首先,利用双向门控循环(BiGRU)神经网络层对文本深层次的信息进行特征提取;其次,利用注意力机制(attention)层对提取的文本深层次信息分配相应的权重;最后,将不同权重的文本特征信息放入softmax函数层进行文本情感极性分类。实验结果表明,所提的神经网络模型在IMDB数据集上的准确率是90. 54%,损失率是0. 2430,时间代价是1100