论文部分内容阅读
针对高光谱遥感影像维数高、数据量巨大且地物分布复杂,导致背景与异常难以区分的问题,提出一种基于光谱空间重构的非监督最邻近规则子空间异常探测算法.首先通过基于结构张量的波段选择算法,去除噪声像元,选择更有效的波段.然后,通过光谱空间重构增加背景与异常的绝对光谱距离.最后,为了充分利用背景字典之间的空间相似性信息,将空间距离权重引入到非监督最邻近规则子空间算法中,提高检测精度.为验证所提算法的有效性,用四组真实的高光谱数据进行实验,研究了不同参数对检测结果的影响.结果表明,与其他异常检测算法对比,所提算