论文部分内容阅读
【摘要】在数学教学中,运用多种形式激发学生的兴趣,启发学生积极思维,是提高数学教学质量的好方法。本文结合小学数学课教学,概括几种导思的方法。
【关键词】小学数学 导思的方法
教师在教学过程中不仅要教学生"学会",而且要教学生"会学"、"善学",这就必须善于引导学生进行积极的思维活动,开发学生的智力和潜能。这里结合小学数学课教学,概括几种导思的方法。
1.以趣诱思
如在教"圆的周长"时,教师先让学生分别量出事先准备好的直径3厘米、 4厘米、6厘米的三块圆形硬纸板的周长,学生得出了它们的周长分别是9厘米多一些, 12厘米多一些,18厘米多一些。这时,教师提出一个问题:"有一个圆形的场地直径是100米,用刚才的方法量周长方便不方便?"接着教师说:"现在看谁最聪明,不用量就可以知道这个直径100米的圆周长大约是多少?"这样就极大地调动了学生思维的积极性。学生很快算出了是300米多一些。教师稍作点拨,使学生很快理解了圆周率的意义,得出了圆周长的计算公式。
2.以疑激思
如在教"能被3整除的数的特征"时,教师先让学生随便报数,教师很快说出了这个数能否被3整除,然后让学生验算,结果全对。
接着顺势诱导:这样一个一个去除太费时间,能不能不用除法,一看就知道一个数能否被3整除呢?学生思维活跃,兴趣很高。又如在教"面积和面积单位"时出示一块长方形木板,正反两面都摆满小正方形,让左、右两边学生分别观察正面和反面,数一数,摆了几个小正方形。一方观察时,另一方要闭上眼睛。观察结果,一方说是12个,一方说是18个。老师便引导学生讨论,使之懂得了:用摆小正方形的方法度量面积,必须用同一大小正方形来度量。这样就自然引出了面积单位的问题。教师通过演示质疑,在关键处激疑,组织学生讨论解疑,逐步把学生的思维引向高潮。
3.以比促思
根据神经系统的对称规律,两种性质不同或类似的对象同时或先后出现,由于大脑皮层的相互诱导规律,可以提高感知效果,增强思维的兴趣。因此,在数学教学中,也要善于运用比较的方法,帮助学生分清知识的联系和区别,以便加深对知识的思考、理解和记忆。如在教"三角形的认识"时,先让学生拿出事先准备的6个三角形,看每个三角形的三个角各是什么角?把具有共同特征角的三角形归为一类,看能分几类?然后总结出三类三角形的相同点(都有两个锐角)和不同点(另一个角分别是锐角、直角、钝角)。这样进行观察比较,学生边看边比边想,很快掌握了三角形的不同种类及其特点。
4.纠错畅思
学生在做题常常出现一些错误,教师要善于以学生解题之错作为探究错因之源,引导学生纠正错误,认识错源,以便畅通正确的思路,如在教完《比的基本性质》后,为了强化巩固这一性质,教师出了这样一道题:"3/8这个比的前项加上6,要使比值不变,它的后项要加上几?"有的学生不加思索地回答:"要加上6"。有的则答不上来。为了纠正错误,疏通思路,教师引导学生思索:①什么是比的性质?②比的前项加上6等于9,就相当于把比的前项乘以几?③要使比值不变,比的后项应该乘以几?这样巧设提问,使学生不仅纠正了错误,而且找到了思维的落脚点,寻到了解决问题的途径。
以变活思。在应用题教学中,对已知条件进行适当的变化,不仅可以深化对应用题的理解,掌握规律,防止知识的负迁移,而且可以活跃思维,开阔思路。如一道分数应用题:"修一条路,面积是1600平方米,修了全路的3/4,修了多少平方米?"可以变为:"修一条路,面积是1600平方米,第一天修了全路的1/2,第二天修了全路的1/4,修了多少平方米?"还可变为:"修一条路,面积是1600平方米,修了3/4,还剩多少平方米?"等等。
这样几经变化,使学生掌握了解答分数应用题的不同思路,思维更加活跃。有些应用题有多种解法,教师要引导学生变换思维角度,广泛探求解法。
在数学教学中,运用多种形式激发学生的兴趣,启发学生积极思维,是提高数学教学质量的好方法。
【关键词】小学数学 导思的方法
教师在教学过程中不仅要教学生"学会",而且要教学生"会学"、"善学",这就必须善于引导学生进行积极的思维活动,开发学生的智力和潜能。这里结合小学数学课教学,概括几种导思的方法。
1.以趣诱思
如在教"圆的周长"时,教师先让学生分别量出事先准备好的直径3厘米、 4厘米、6厘米的三块圆形硬纸板的周长,学生得出了它们的周长分别是9厘米多一些, 12厘米多一些,18厘米多一些。这时,教师提出一个问题:"有一个圆形的场地直径是100米,用刚才的方法量周长方便不方便?"接着教师说:"现在看谁最聪明,不用量就可以知道这个直径100米的圆周长大约是多少?"这样就极大地调动了学生思维的积极性。学生很快算出了是300米多一些。教师稍作点拨,使学生很快理解了圆周率的意义,得出了圆周长的计算公式。
2.以疑激思
如在教"能被3整除的数的特征"时,教师先让学生随便报数,教师很快说出了这个数能否被3整除,然后让学生验算,结果全对。
接着顺势诱导:这样一个一个去除太费时间,能不能不用除法,一看就知道一个数能否被3整除呢?学生思维活跃,兴趣很高。又如在教"面积和面积单位"时出示一块长方形木板,正反两面都摆满小正方形,让左、右两边学生分别观察正面和反面,数一数,摆了几个小正方形。一方观察时,另一方要闭上眼睛。观察结果,一方说是12个,一方说是18个。老师便引导学生讨论,使之懂得了:用摆小正方形的方法度量面积,必须用同一大小正方形来度量。这样就自然引出了面积单位的问题。教师通过演示质疑,在关键处激疑,组织学生讨论解疑,逐步把学生的思维引向高潮。
3.以比促思
根据神经系统的对称规律,两种性质不同或类似的对象同时或先后出现,由于大脑皮层的相互诱导规律,可以提高感知效果,增强思维的兴趣。因此,在数学教学中,也要善于运用比较的方法,帮助学生分清知识的联系和区别,以便加深对知识的思考、理解和记忆。如在教"三角形的认识"时,先让学生拿出事先准备的6个三角形,看每个三角形的三个角各是什么角?把具有共同特征角的三角形归为一类,看能分几类?然后总结出三类三角形的相同点(都有两个锐角)和不同点(另一个角分别是锐角、直角、钝角)。这样进行观察比较,学生边看边比边想,很快掌握了三角形的不同种类及其特点。
4.纠错畅思
学生在做题常常出现一些错误,教师要善于以学生解题之错作为探究错因之源,引导学生纠正错误,认识错源,以便畅通正确的思路,如在教完《比的基本性质》后,为了强化巩固这一性质,教师出了这样一道题:"3/8这个比的前项加上6,要使比值不变,它的后项要加上几?"有的学生不加思索地回答:"要加上6"。有的则答不上来。为了纠正错误,疏通思路,教师引导学生思索:①什么是比的性质?②比的前项加上6等于9,就相当于把比的前项乘以几?③要使比值不变,比的后项应该乘以几?这样巧设提问,使学生不仅纠正了错误,而且找到了思维的落脚点,寻到了解决问题的途径。
以变活思。在应用题教学中,对已知条件进行适当的变化,不仅可以深化对应用题的理解,掌握规律,防止知识的负迁移,而且可以活跃思维,开阔思路。如一道分数应用题:"修一条路,面积是1600平方米,修了全路的3/4,修了多少平方米?"可以变为:"修一条路,面积是1600平方米,第一天修了全路的1/2,第二天修了全路的1/4,修了多少平方米?"还可变为:"修一条路,面积是1600平方米,修了3/4,还剩多少平方米?"等等。
这样几经变化,使学生掌握了解答分数应用题的不同思路,思维更加活跃。有些应用题有多种解法,教师要引导学生变换思维角度,广泛探求解法。
在数学教学中,运用多种形式激发学生的兴趣,启发学生积极思维,是提高数学教学质量的好方法。