论文部分内容阅读
深度学习模型训练需要大量的有标签数据进行训练,现实生活中数据大多没有标签,需要进行人工标注,对于小样本的训练存在过拟合现象,针对此问题,本文提出一种算法:首先采用稀疏编码器对数据进行降维处理,然后利用T-SNE算法继续将数据维度降低到二维空间,最后采用高斯混合模型对数据进行聚类分析。该算法采用无监督斱法,不需要预先对数据进行标签化。该算法对数据过拟合具有一定的泛化能力,在手写数据集的训练集取得0.89205的准确度,在测试集中取得0.896的精度。该算法为小样本的学习提供了新思路。