论文部分内容阅读
目的研究算子方程X+A^*X^-2A=Q有正算子解的条件,探讨方程有正算子解时A,Q之间满足的关系。方法利用正算子本身的特点和性质,构造迭代序列,采用迭代的方法。结果若方程X+A^*X^-2A=Q有正算子解,则解有一定的范围限制,同时A,Q的范数、谱半径、数值域半径之间也满足一定的关系。结论方程X+A^*X^-2A=Q有正算子解的充要条件是A有恰当的分解形式;方程有正算子解的必要条件是A,Q的范数、谱半径、数值域半径之间满足一定的条件;A,Q谱的最大值、最小值之间也满足特定的关系。