论文部分内容阅读
针对非监督鉴别投影(UDP)算法分类能力弱和性能不稳定问题,提出了一种基于RSM(random subspace method)的判别分析方法集成(DAC—EL)。该方法对训练样本的特征向量空间进行随机采样,得到多个UDP投影变换,因此获得多个既有差异又互补的投影子空间。由测试样本测试集成各基分类器分类精度,分类精度作为基分类器集成权重。基分类器分类结果线性权重集成给出集成分类器的输出结果。在ORL和YALE人脸图像库上实验结果表明,DAC—EL方法性能明显优于UDP方法和基于多数投票法的UDP集成方法,