论文部分内容阅读
提出了一种改进的粒子群算法,在初始化种群时采用相对基学习原理,以获得较优的初始候选解;在后期迭代过程中引入扩张模型,使粒子不易陷入局部极小值点,并将其用于多阈值图像分割。由最大熵阈值法得到所要优化的目标函数,用改进的粒子群算法对其进行优化,使其能够准确并迅速的得到分割的最佳阈值组合,并用该阈值组合对图像进行分割。将此分割结果与遗传算法的多阈值分割结果相比较可以看出,该算法可更为准确快速的实现图像分割。