论文部分内容阅读
针对传统的时间序列分析方法预测科学数据效果较差的特点,提出了一种结合自组织神经网络和灰色理论的时间序列预测方法。该方法利用度量时间序列相似性距离函数,将时间序列按照其变化规律分成不同的类别,并在GM算法中针对白化参数进行优化,对科学数据时间序列进行自组织聚类,针对各类别采用灰色理论建立预测模型。试验表明,该模型适合科学数据的变化特点,提高了预测精度。