论文部分内容阅读
多种退化类型混合的图像比单一类型的退化图像降质更严重,很难建立精确模型对其复原,研究端到端的神经网络算法是复原的关键.现有的基于操作选择注意力网络的算法(operation-wiseattentionnetwork,OWAN)虽然有一定的性能提升,但是其网络过于复杂,运行较慢,复原图像缺乏高频细节,整体效果也有提升的空间.针对这些问题,提出一种基于层级特征融合的自适应复原算法.该算法直接融合不同感受野分支的特征,增强复原图像的结构;用注意力机制对不同层级的特征进行动态融合,增加模型的自适应性,降低了