论文部分内容阅读
文章提出了将小波函数引入神经网络预测模型,对一个具有非线性、时变性、大滞后性特点的地铁站台内的CO2含量进行预测控制。而小波神经网络系统结合了小波分析和传统神经网络的优点,且可不断吸收环境新信息,有良好的函数学习能力和推广能力。最后实现了对具有大干扰性、大滞后性和不确定随机干扰因素的CO2含量进行了精确预测。