论文部分内容阅读
AIM: To compare the influence of different transplant sites in bone marrow mesenchymal stem cell (MSC)-based therapy for liver fibrosis. METHODS: MSCs isolated from Sprague Dawley (SD) rats were induced into hepatocyte-like cells. Liver fibrosis in SD rats was induced with carbon tetrachloride. Following hepatocyte induction in vitro, 4’,6-diamidino- 2-phenylindole (DAPI)-labeled MSCs were transplanted by intravenous, intrahepatic, and intraperitoneal injection. Histopathological staining, immunohistochemistry, and biochemical analysis were used to compare the morphological and functional liver regeneration among different MSC injection modalities. The expression differences of interleukins, growth factor, extracellular matrix, matrix metalloproteinases, and tissue inhibitor of metalloproteinase were examined by real-time reverse transcription-polymerase chain reaction (RT-PCR) andenzyme linked immunosorbent assay (ELISA). RESULTS: Four days after exposure to hepatocyte differentiation medium, MSCs that did not express hepatocyte markers could express α-fetoprotein, albumin, and cytokeratin 18. The results of histopathological staining, immunohistochemistry, and biochemical analysis indicated that intravenous injection is more effective at rescuing liver failure than other injection modalities. DAPI-labeled cells were found around liver lobules in all three injection site groups, but the intravenous group had the highest number of cells. PCR and ELISA analysis indicated that interleukin-10 (IL-10) was highest in the intravenous group, whereas il1β, il6, tnfα and tgfβ, which can be regulated by IL10 and are promoters of liver fibrosis, were significantly lower than in the other groups. CONCLUSION: MSC administration is able to protect against liver fibrosis. Intravenous injection is the most favorable treatment modality through promotion of IL10 expression.
AIM: To compare the influence of different transplant sites in bone marrow mesenchymal stem cell (MSC) -based therapy for liver fibrosis. METHODS: MSCs isolated from Sprague Dawley (SD) rats were induced into hepatocyte-like cells. Liver fibrosis in SD rats was induced with carbon tetrachloride. Following hepatocyte induction in vitro, 4 ’, 6-diamidino-2-phenylindole (DAPI) -labeled MSCs were transplanted by intravenous, intrahepatic, and intraperitoneal injection. Histopathological staining, immunohistochemistry, and biochemical analysis were used to compare the morphological and functional liver regeneration among different MSC injection modalities. The expression differences of interleukins, growth factor, extracellular matrix, matrix metalloproteinases, and tissue inhibitor of metalloproteinase were examined by real-time reverse transcription-polymerase chain reaction (RT-PCR) andenzyme linked immunosorbent assay (ELISA). RESULTS: Four days after exposure to hepatocyte differentiation medium, MSCs that did not express hepatocyte markers could express alpha-fetoprotein, albumin, and cytokeratin 18. The results of histopathological staining, immunohistochemistry, and biochemical analysis indicated that intravenous injection is more effective at rescuing liver failure than other injection modals. DAPI- labeled cells were found around liver lobules in all three injection site groups, but the intravenous group had the highest number of cells. PCR and ELISA analysis showed that interleukin-10 (IL-10) was highest in the intravenous group, , tnfα and tgfβ, which can be regulated by IL10 and are promoters of liver fibrosis, were significantly lower than in the other groups. CONCLUSION: MSC administration is able to protect against liver fibrosis. Intravenous injection is the most favorable treatment modality through promotion of IL10 expression.