论文部分内容阅读
文章针对网络流量时间序列的预测问题,提出一种基于变分模态分解(variational mode decomposition, VMD)-分散熵(dispersion entropy, DE)的多尺度组合预测方法。首先对流量样本数据进行混沌特性分析,使用改进的VMD-DE方法对流量数据分解重构,减少周期性流量序列预测的随机性和计算复杂度;然后采用改进鸡群优化算法(chicken swarm optimization, CSO)优化Elman神经网络与最小二乘支持向量机(least squares suppo