论文部分内容阅读
作为传统线性系统辨识方法的一个有益补充,子空间模型辨识方法(SMI)近年来获得了广泛关注.这类方法综合了系统理论,线性代数和统计学三方面的思想,其特点是直接由输入输出数据辨识系统的状态空间模型,因而非常适合多变量系统辨识.首先介绍了SMI的基本思想,然后分析了3种基本算法(N4SID、MOESP和CVA)的异同点、算法实现、统计特性和模型稳定性等方面.随后探讨了其他一些SMI算法,包括连续时间系统SMI算法、频域SMI算法、闭环SMI算法和非线性系统SMI算法.为说明SMI方法的特性,通过一个工厂实际例子