论文部分内容阅读
机器人路径规划问题通常采用不同算法来对其进行规划,为发挥算法中改进遗传算法和鲸鱼优化法的优势,弥补遗传算法出现优化准确率和收敛度不高等问题,将改进遗传算法和鲸鱼优化法融合,增强移动机器人路径规划对动态环境的适应性能.对算法适应度函数进行优化,改善了基本遗传算法、提升了原算法对函数的求解效率.通过遗传算法、对遗传算法进行改进的算法、改进遗传算法与鲸鱼算法相融合的算法所运行的路径长度与运行时间进行比较,结果表明融合改进优化算法可以有效获取最优算子,减少运算时的迭代次数,同时提升算法的规划准确率.