论文部分内容阅读
提出一种基于局部线性嵌入的最大散度矩阵算法——FSLLE。引入线性映射解决局部线性嵌入算法的样本外学习问题,通过自适应动态地确定局部线性空间邻域参数,最大化地融合样本数据的类别信息和局部结构信息矩阵,以获取髙维数据的最佳分类低维子空间。在JAFFE人脸表情库对该算法进行测试,结果表明,FSLLE算法能根据流形结构动态地确定局部邻域的大小,具有较好的表情识别率。