论文部分内容阅读
方面级细粒度情感分类是指针对文本数据,分析其在指定方面的情感极性.由于获取到的评论样本往往涉及不同的方面,导致各个方面的情感极性不平衡.为了减少不平衡数据对模型训练的影响,本文提出了一种新的数据平衡方法——批处理平衡方法(BB),用来平衡多标签多类别数据.同时,由于评论文本蕴含多个方面,传统模型结构往往每次只能预测一个方面的情感.为了提高情感挖掘效率,本文提出了自动关注不同方面的情感注意力网络——双向循环卷积注意力网络(Attn-Bi-LCNN)模型.模型会同时关注不同方面的不同情感信息形成情感语义矩阵,根据情感矩阵进行情感预测.对比实验表明,模型取得了更好的预测结果和更快的运算速度.