论文部分内容阅读
通过研究主成分分析(principal component analysis,简称PCA)中有效特征值与信号频率和幅值之间的关系,发现有效特征值的数量是由原始信号中频率成分的个数决定,与幅值、频率和相位的大小无关。信号中每个频率产生两个有效的特征值,且幅值决定协方差矩阵C的特征值在其分布图中的排列顺序。提出了一种基于PCA的特征频率提取算法,该算法可实现对单个或多个特征频率的准确提取。将此方法应用于大型转子系统轴心轨迹的提纯上,效果优于谐波小波和小波包算法。