论文部分内容阅读
【摘要】 在《概率论与数理统计》课程中融入数学建模思想,按专业分类调整课程教学内容,突出其在各专业领域中的应用;在理论课教学中融入数学建模案例,使学生对概率论与数理统计的应用有初步的认识;设计培养学生应用数学理论解决相关专业问题的实践教学环节;掌握利用计算机进行高效计算的实践环节,加强学生将所学的理论知识用于实践的能力,提高学生的数学应用与数学计算能力.
【关键词】 概率论与数理统计; 数学建模; 实践教学
【基金项目】 2015年度广东省高等教育教学改革项目;五邑大学2015年教学改革项目(JG2014011).
概率论与数理统计作为高等院校的一门重要基础课,主要教学目标是培养学生运用概率统计分析问题和解决问题的能力,使学生掌握概率论的基本概念与处理随机现象的方法,在许多的学科中都有着重要的应用价值. 它不仅为学生学习专业课程和解决实际问题提供了必不可少的数学知识和数学技能,而且也培养了学生的思维能力、分析解决实际问题的能力和自学能力,因此,概率论与数理统计教学质量的好坏将影响到后续一些课程的教学质量.
然而在实际教学过程中,教学和学习的效果都不理想,很多学生反映这门课程难懂、难学. 这在一定程度上影响了后续专业课程的学习,更无助于学生数学素养的培养. 传统的概率统计课程的教学,比较重视理论方面的教学,而对学生在实践方面的训练较少,学生虽然从课堂上了解了大量的概念、公式和定理,但对于它们的实际用途了解较少,很容易造成理论与实际的脱节. 而数学建模是应用数学知识解决实际问题的重要手段和途径,在概率论与数理统计中融入数学建模思想的研究与实践, 将有助于学生学习其理论知识,具有重要的理论和现实意义.
一、结合专业背景,改革教学内容
在今天教育改革的大背景下,面对着大学生生源不断扩大的现状,面对着大学毕业生种种就业去向,概率论与数理统计课程的教学决不应该仅仅定位于传授给学生概率知识,教给他们定义、公理、定理、推论,把他们当作灌注知识的“容器”. 相反,我们的教学,不仅要使学生学到许多重要的数学概念、方法和结论,更应该在传授数学知识的同时,使他们学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,在数学文化的熏陶中茁壮成长. 为此,应在教学过程中,使学生了解到他们现在所学的那些看来枯燥无味但又似乎是天经地义的概念、定理和公式,并不是无本之木、无源之水,而是有其现实的来源与背景的. 而目前概率论与数理统计课程教学内容仍以“纯数学”理论为主,普遍没有结合各个专业的特点,没有涉及数学在相关专业中的应用内容,这不利于学生将数学理论应用于专业领域之中来解决相关专业中存在的问题.
通过对全国大学生数学建模竞赛题目的分析,可以发现,有不少题目涉及概率论和数理统计知识,如北京奥运会场馆的人流分布,DNA序列的分类、乳腺癌诊断问题、彩票问题、电力市场的输电阻塞管理等问题. 由此可见,概率统计知识与人们的日常生活乃至科学技术都紧密相关. 因此,在课程的某些章节中融入数学建模的内容是完全可行的.
教师在授课过程中可从每个概念的直观背景入手,精心选择一些跟我们的生活密切相关而又有趣的实例,通过这些案例把所学的理论知识和实际生活结合起来,把抽象的数学与生动有趣的案例结合起来,调动学生的主动性和积极性,培养学生分析和解决问题的能力. 案例应适当延伸课本内容,吸取社会、经济、生活的背景与热点问题,特别是要结合学生的专业背景. 例如,工科专业应多选与计算机、通信、机械等相关的案例,而经济管理类则尽量选择与工商、保险相关的案例. 学生在分析和解决这些问题的同时,既能感受到将数学知识应用于实际的美妙,同时又能获得利用所学知识解决实际问题的成就感. 从而激发学生的兴趣.调动他们学习的积极性和主动性.
二、运用相关案例,改变教学方式
传统教学的讲授方式往往直白地将定义、定理等精确表达方式呈现在学生的面前,而这些经过加工的精练语言往往抹杀了最初的思想. 将数学建模思想引入课程教学中,可以弥补这种缺点,再现原始思想. 这就要解决一个关键问题,如何运用案例. 原始思想一般都来自于某些灵感的火花,或者说某种顿悟. 案例实际上起到了这种效果,让学生参与到案例的分析上来,提出自己的思想,在老师和其他学生的诱导和启发下,往往使得问题的本质浮出水面,老师需要做的就是总结和提炼这些闪光的思想.
可以在课前导入时引入数学建模思想. 概率论与数理统计比高等数学、线性代数的难度更深一些,对于学生来说更难以接受. 可以在每一节课前采用启发式,由浅入深,由直观到抽象,使学生真正掌握概率论与数理统计的概念,以便提高学生学习的乐趣.
在讲授过程中引入数学建模思想. 在理论上,更新传统教学观念,改变传统教学方式,提倡师生互动、启发式的教学方式. 从案例出发, 适当对一些问题进行讨论,在解决具体问题中引出一个相应的方法和理论. 这样容易引起学生的兴趣,可以活跃课堂气氛,激活学生思维,延伸和扩展知识面, 培养学生爱思考的习惯,使授课效果更好.
同时合理运用多媒体教学和统计软件,以调动学生学习兴趣为导向,打破以教师为主的教学模式,注重对学生创新思维能力和实践能力的培养.
另外,数学建模思维培养还须采用循序渐进的手段,要不断地和已有的教学内容有机结合,使数学建模思维的引领作用充分体现. 例如,由教师从历年的数学建模竞赛中选择一些优秀论文作为布置的题目,让学生分组课后研读讨论、讲解,既能使学生深入地理解知识点,又能锻炼学生团结合作解决问题的能力,然后在课堂上组织学生汇报交流,教师给予总结.
三、利用数学建模软件,提高学生计算能力
目前课程中的计算都局限于手工计算,而没有教给学生利用计算机技术,许多学生完成概率论与数理统计的学习后,在专业课程中,面对大量数据,需要运用统计思想方法分析时往往出现无从下手的现象,造成这种现象的原因有两方面:一是缺乏灵活运用所学知识解决实际问题的能力;另外就是数据量大,计算过于复杂,手工难以实现. 对于第一种情况我们通过将数学模型融入教学内容与学生所学的专业相结合来提高学生的运用能力. 针对第二种情况增加课程设计或计算机实践环节,结合概率统计案例及统计实践的形式,上课过程中为学生提供一些实验课题,每次实验时,教师给出所要实验课题的背景、实验的目的和要求及实验的主要内容等. 给学生演示一些统计软件中的基本功能, 展示统计方法的选择、统计模型的建立、数据处理以及统计结果分析的全过程,有助于学生掌握统计方法和实际操作能力. 同时引导学生自己动手去利用计算机及网络完成概率统计的有关试验,完成数据的收集、调用、整理、计算、分析等过程,培养学生运用软件技术去完成数据建模,让学生逐步提高运用数学统计软件解决实际问题能力,以及增强学生面向信息时代应具有的计算机应用能力.
四、改变课堂学习评价体系,课后作业引入建模思想
概率论与数理统计课程在总学时固定的情况下,要拿出一定的时间搞专门的数学建模训练,是很不现实的. 但在这有限的教学时段里,逐步渗透和融入数学建模的思想和意识是切实可行的,它完全可以在例题和习题之中加以体现. 布置课外作业为了考查学生.
对课堂内容完全掌握,对问题有更深刻的理解,只有把数学方法应用到实践中去,解决几个实际问题,才能达到理解、巩固和提高的效果.
针对概率统计实用性强的特点,我们可以布置一些开放性作业. 只有把某种思想方法应用到实践中去,解决几个实际问题,才能达到理解、深化、巩固和提高的效果. 如测量某年级男、女生的身高,分析存在什么差异;分析下课后饭堂人数拥挤程度,提出解决方案;分析某种蔬菜的销售量与季节的关系等. 学生可以自由组队,通过合作、感知、体验和实践的方式完成此类作业,在参与完成作业的过程中,不但激发了学习兴趣还培养了不断学习、勇于创新、团结互助的精神. 通过数学建模思想的融入,让学生自己去体会其重要性,激发学生学习概率论与数理统计的兴趣.
【参考文献】
[1]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京: 高等教育出版社,2010.
[2]姜启源,谢金星,叶俊. 数学模型( 第四版)[M].北京: 高等教育出版社,2010.
[3]张二艳,董文乙.在概率论与数理统计教学中融入数学建模的探讨[J].国家林业局管理干部学院学报,2012(2).
[4]王义康,王航平.谈数学建模在理工科学生创新实践能力培养中的应用[J].教育探索,2012(4).
【关键词】 概率论与数理统计; 数学建模; 实践教学
【基金项目】 2015年度广东省高等教育教学改革项目;五邑大学2015年教学改革项目(JG2014011).
概率论与数理统计作为高等院校的一门重要基础课,主要教学目标是培养学生运用概率统计分析问题和解决问题的能力,使学生掌握概率论的基本概念与处理随机现象的方法,在许多的学科中都有着重要的应用价值. 它不仅为学生学习专业课程和解决实际问题提供了必不可少的数学知识和数学技能,而且也培养了学生的思维能力、分析解决实际问题的能力和自学能力,因此,概率论与数理统计教学质量的好坏将影响到后续一些课程的教学质量.
然而在实际教学过程中,教学和学习的效果都不理想,很多学生反映这门课程难懂、难学. 这在一定程度上影响了后续专业课程的学习,更无助于学生数学素养的培养. 传统的概率统计课程的教学,比较重视理论方面的教学,而对学生在实践方面的训练较少,学生虽然从课堂上了解了大量的概念、公式和定理,但对于它们的实际用途了解较少,很容易造成理论与实际的脱节. 而数学建模是应用数学知识解决实际问题的重要手段和途径,在概率论与数理统计中融入数学建模思想的研究与实践, 将有助于学生学习其理论知识,具有重要的理论和现实意义.
一、结合专业背景,改革教学内容
在今天教育改革的大背景下,面对着大学生生源不断扩大的现状,面对着大学毕业生种种就业去向,概率论与数理统计课程的教学决不应该仅仅定位于传授给学生概率知识,教给他们定义、公理、定理、推论,把他们当作灌注知识的“容器”. 相反,我们的教学,不仅要使学生学到许多重要的数学概念、方法和结论,更应该在传授数学知识的同时,使他们学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,在数学文化的熏陶中茁壮成长. 为此,应在教学过程中,使学生了解到他们现在所学的那些看来枯燥无味但又似乎是天经地义的概念、定理和公式,并不是无本之木、无源之水,而是有其现实的来源与背景的. 而目前概率论与数理统计课程教学内容仍以“纯数学”理论为主,普遍没有结合各个专业的特点,没有涉及数学在相关专业中的应用内容,这不利于学生将数学理论应用于专业领域之中来解决相关专业中存在的问题.
通过对全国大学生数学建模竞赛题目的分析,可以发现,有不少题目涉及概率论和数理统计知识,如北京奥运会场馆的人流分布,DNA序列的分类、乳腺癌诊断问题、彩票问题、电力市场的输电阻塞管理等问题. 由此可见,概率统计知识与人们的日常生活乃至科学技术都紧密相关. 因此,在课程的某些章节中融入数学建模的内容是完全可行的.
教师在授课过程中可从每个概念的直观背景入手,精心选择一些跟我们的生活密切相关而又有趣的实例,通过这些案例把所学的理论知识和实际生活结合起来,把抽象的数学与生动有趣的案例结合起来,调动学生的主动性和积极性,培养学生分析和解决问题的能力. 案例应适当延伸课本内容,吸取社会、经济、生活的背景与热点问题,特别是要结合学生的专业背景. 例如,工科专业应多选与计算机、通信、机械等相关的案例,而经济管理类则尽量选择与工商、保险相关的案例. 学生在分析和解决这些问题的同时,既能感受到将数学知识应用于实际的美妙,同时又能获得利用所学知识解决实际问题的成就感. 从而激发学生的兴趣.调动他们学习的积极性和主动性.
二、运用相关案例,改变教学方式
传统教学的讲授方式往往直白地将定义、定理等精确表达方式呈现在学生的面前,而这些经过加工的精练语言往往抹杀了最初的思想. 将数学建模思想引入课程教学中,可以弥补这种缺点,再现原始思想. 这就要解决一个关键问题,如何运用案例. 原始思想一般都来自于某些灵感的火花,或者说某种顿悟. 案例实际上起到了这种效果,让学生参与到案例的分析上来,提出自己的思想,在老师和其他学生的诱导和启发下,往往使得问题的本质浮出水面,老师需要做的就是总结和提炼这些闪光的思想.
可以在课前导入时引入数学建模思想. 概率论与数理统计比高等数学、线性代数的难度更深一些,对于学生来说更难以接受. 可以在每一节课前采用启发式,由浅入深,由直观到抽象,使学生真正掌握概率论与数理统计的概念,以便提高学生学习的乐趣.
在讲授过程中引入数学建模思想. 在理论上,更新传统教学观念,改变传统教学方式,提倡师生互动、启发式的教学方式. 从案例出发, 适当对一些问题进行讨论,在解决具体问题中引出一个相应的方法和理论. 这样容易引起学生的兴趣,可以活跃课堂气氛,激活学生思维,延伸和扩展知识面, 培养学生爱思考的习惯,使授课效果更好.
同时合理运用多媒体教学和统计软件,以调动学生学习兴趣为导向,打破以教师为主的教学模式,注重对学生创新思维能力和实践能力的培养.
另外,数学建模思维培养还须采用循序渐进的手段,要不断地和已有的教学内容有机结合,使数学建模思维的引领作用充分体现. 例如,由教师从历年的数学建模竞赛中选择一些优秀论文作为布置的题目,让学生分组课后研读讨论、讲解,既能使学生深入地理解知识点,又能锻炼学生团结合作解决问题的能力,然后在课堂上组织学生汇报交流,教师给予总结.
三、利用数学建模软件,提高学生计算能力
目前课程中的计算都局限于手工计算,而没有教给学生利用计算机技术,许多学生完成概率论与数理统计的学习后,在专业课程中,面对大量数据,需要运用统计思想方法分析时往往出现无从下手的现象,造成这种现象的原因有两方面:一是缺乏灵活运用所学知识解决实际问题的能力;另外就是数据量大,计算过于复杂,手工难以实现. 对于第一种情况我们通过将数学模型融入教学内容与学生所学的专业相结合来提高学生的运用能力. 针对第二种情况增加课程设计或计算机实践环节,结合概率统计案例及统计实践的形式,上课过程中为学生提供一些实验课题,每次实验时,教师给出所要实验课题的背景、实验的目的和要求及实验的主要内容等. 给学生演示一些统计软件中的基本功能, 展示统计方法的选择、统计模型的建立、数据处理以及统计结果分析的全过程,有助于学生掌握统计方法和实际操作能力. 同时引导学生自己动手去利用计算机及网络完成概率统计的有关试验,完成数据的收集、调用、整理、计算、分析等过程,培养学生运用软件技术去完成数据建模,让学生逐步提高运用数学统计软件解决实际问题能力,以及增强学生面向信息时代应具有的计算机应用能力.
四、改变课堂学习评价体系,课后作业引入建模思想
概率论与数理统计课程在总学时固定的情况下,要拿出一定的时间搞专门的数学建模训练,是很不现实的. 但在这有限的教学时段里,逐步渗透和融入数学建模的思想和意识是切实可行的,它完全可以在例题和习题之中加以体现. 布置课外作业为了考查学生.
对课堂内容完全掌握,对问题有更深刻的理解,只有把数学方法应用到实践中去,解决几个实际问题,才能达到理解、巩固和提高的效果.
针对概率统计实用性强的特点,我们可以布置一些开放性作业. 只有把某种思想方法应用到实践中去,解决几个实际问题,才能达到理解、深化、巩固和提高的效果. 如测量某年级男、女生的身高,分析存在什么差异;分析下课后饭堂人数拥挤程度,提出解决方案;分析某种蔬菜的销售量与季节的关系等. 学生可以自由组队,通过合作、感知、体验和实践的方式完成此类作业,在参与完成作业的过程中,不但激发了学习兴趣还培养了不断学习、勇于创新、团结互助的精神. 通过数学建模思想的融入,让学生自己去体会其重要性,激发学生学习概率论与数理统计的兴趣.
【参考文献】
[1]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京: 高等教育出版社,2010.
[2]姜启源,谢金星,叶俊. 数学模型( 第四版)[M].北京: 高等教育出版社,2010.
[3]张二艳,董文乙.在概率论与数理统计教学中融入数学建模的探讨[J].国家林业局管理干部学院学报,2012(2).
[4]王义康,王航平.谈数学建模在理工科学生创新实践能力培养中的应用[J].教育探索,2012(4).