论文部分内容阅读
采用G60高速公路(上海段)上布设的单组线圈检测器检测的车道级交通流数据对该路段上发生追尾事故可能性进行研究.通过配对案例对照的方法,分别对事故前5~10min,10~15min和15-20min的交通流数据建立了追尾事故实时预测支持向量机模型.结论表明基于事故前5~10min的交通流数据构建的支持向量机分类器能够有效的对事故进行实时预测,总体事故预测精度为84.85%,误报率为0.33%,该支持向量机分类器具有较高的实用价值,同时也表明了基于单流量检测器的交通流数据对事故进行实时预测的可靠性.