论文部分内容阅读
遥感图像分类是遥感图像研究的主要内容之一,分类精度高低直接关系到遥感数据的可靠性和实用性。多分类器系统可以提高单分类器分类的精度,但往往要求组成的子分类器分类误差相互独立,子分类器选择困难。支持向量机是新发展起来的一种非参数分类器,其分类原理和传统的基于统计的分类方法不同,表现出一定的独立性。为此本文尝试基于支持向量机和目前使用最广泛的最大似然法,构建一个性能高效且组合方式简单的复合分类器(称为遥感影像分类自校正方法)。同时,为了验证该分类器的性能,在北京市2006年4月27日的SPOT2图像上选择