基于神经网络离散混合蛙跳算法的多用户检测

来源 :计算机工程 | 被引量 : 0次 | 上传用户:anwencheng2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为进一步提高基于离散混合蛙跳算法(DSFLA)的多用户检测性能,提出一种基于DSFLA和神经网络相结合的神经网络离散混合蛙跳算法,并用于多用户检测。在DSFLA的每一族内更新中,随机选择若干只“青蛙”采用Hopfield神经网络的寻优更新策略,进行快速迭代,寻找全局最优。仿真结果证明,基于神经网络离散混合蛙跳算法的多用户检测器在误码率、收敛速度、系统容量、抗远近能力等方面都优于传统方法和一些应用优化算法的多用户检测器。
其他文献
在明确专业培养目标和规格的情况下,确定了教改的基本思路,通过合理构建教学体系、优化课程结构、规范教学等一系列措施,使本试点专业的教学适应了培养目标的要求,保障了人才培养质量。
传统的k-means算法要求用户事先给定k值,限制了很多应用,初始中心点随机选择,容易导致局部极值点,常用的评价函数对于求解最优聚类数目也不理想。针对这些问题,该文提出一种
协同过滤算法是目前个性化推荐系统中应用最成功的推荐算法之一,但传统的算法没有考虑在不同时间段内寻找最近邻居问题,导致寻找的邻居集合可能不是最近邻居集合。针对此问题,提
为提高正交遗传算法收敛速度和搜索精度,在正交遗传算法的基础上引入局部搜索策略,提出一种新的聚类局部搜索算子。利用正交算子初始化种群,保证初始群体分布的均匀性和多样性。
目前,大学生的业余空闲时间较多,而有组织的体育活动或体育课时间相对较少,如何合理有效地引导、组织课外体育活动成为当今高校体育改革的一个重要课题。