基于深度时空Q网络的机器人疏散人群算法

来源 :计算机工程 | 被引量 : 0次 | 上传用户:myeclipse76
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对目前人群疏散方法中机器人灵活性低、场景适应性有限与疏散效率低的问题,提出一种基于深度强化学习的机器人疏散人群算法。利用人机社会力模型模拟突发事件发生时的人群疏散状态,设计一种卷积神经网络结构提取人群疏散场景中复杂的空间特征,将传统的深度Q网络与长短期记忆网络相结合,解决机器人在学习中无法记忆长期时间信息的问题。实验结果表明,与现有基于人机社会力模型的机器人疏散人群方法相比,该算法能够提高在不同仿真场景中机器人疏散人群的效率,从而验证了算法的有效性。
其他文献
针对非平衡金融数据集,提出一种银行欺诈账户检测框架iForest-SMOTE。基于账户的动态交易特点,从统计、时序、监督信息维度抽取账户交易行为特征。针对过采样技术ADASYN在金
分析疾病与基因、miRNA等生物实体之间的关联是生物研究领域的重要目标,然而利用海量的数据进行生物学实验成本过高。提出一种基于网络表示学习的关联预测算法,通过多源数据
针对连续时间动态网络的节点分类问题,根据实际网络信息传播特点定义信息传播节点集,改进网络表示学习的节点序列采样策略,并设计基于信息传播节点集的连续时间动态网络节点
针对步态识别中步态视角变化、步态数据样本量少及较少利用步态时间信息等问题,提出一种基于视角转换的步态识别方法。通过VTM-GAN网络,将不同视角下的步态能量图及含有步态时间信息的彩色步态能量图,统一映射到保留步态信息最丰富的侧视图视角,以此突破步态识别中多视角的限制,在视角转换的基础上,通过构建侧视图下的步态正负样本对来扩充用于网络训练的数据,并采用基于距离度量的时空双流卷积神经网络作为步态识别网
在执行视频行人重识别任务时,传统基于局部的方法主要集中于具有特定预定义语义的区域学习局部特征表示,在复杂场景下的学习效率和鲁棒性较差。通过结合全局特征和局部特征提出一种基于时空关注区域的视频行人重识别方法。将跨帧聚合的关注区域特征与全局特征进行融合得到视频级特征表示,利用快慢网络中的两个路径分别提取全局特征和关注区域特征。在快路径中,利用多重空间关注模型提取关注区域特征,利用时间聚合模型聚合所有采
针对常规马尔科夫随机场(MRF)模型对复杂自然图像分割时,存在对噪声敏感且边缘模糊的问题,构建一种基于边缘约束局部区域MRF(ECLRMRF)的图像分割模型。利用欧氏距离度量局部区域内邻接像素的相似度,依据其相似度构建局部空间来约束高斯混合模型,有效描述丰富的局部区域统计特征,并建立MRF模型的局部区域一致性约束项。利用Canny边缘检测算子提取图像的边缘特征,并在分割过程中建立图像分割区域的边缘
为提高航拍图像中输电线路绝缘子的检测准确性,提出一种改进的Faster RCNN网络模型。在原始Faster RCNN网络模型上运用多尺度训练,同时根据绝缘子自身特性调整滑动窗口产生的候选区域比例,并引入检测困难样本的对手生成策略,实现不同尺寸及部分遮挡输电线路绝缘子的准确检测。实验结果表明,改进的Faster RCNN网络模型相比原始Faster RCNN网络模型的检测精确度提升了4.33个百分
针对中继协同无人机(UAV)辅助的无线通信网络,提出一种基于认知无线电网络(CRN)的物理层安全通信方案。利用二次发射机协同解码转发中继向目的接收机发送机密消息,将UAV用作
阎连科小说《炸裂志》运用“地方志”的创作形式和神实主义写作观,描摹了“炸裂市”在发展过程中所导致的生存境遇的危机和个体表征自我的危机,并在更深层面揭示了人的主体性
依据辞书学理论,从释义方式、个性义征和类义征3个角度对《尔雅·释兽》的释义进行计量研究,发现《尔雅·释兽》篇多采用解说式释义;个性义征种类多样,在实现形式上初具系统