论文部分内容阅读
针对短时交通量的非线性和时变性,提出一种基于粒子群—小波神经网络的预测方法。该方法以前馈多层感知器的神经网络拓扑结构为基础,将预测误差反向传播,经粒子群优化算法对神经网络连接权值进行修正。隐含层神经元选择Morlet母小波基函数作为激活函数,利用小波分解分离短时交通量的高频部分和低频部分,防止高低频数据之间的过度影响,进一步提高预测的精度。根据最简化结构概念对神经网络结构进行泛化,确定最优网络结构,提高预测的速度。通过实例预测显示,该方法预测精度高,预测速度快,能够满足实际工程的要求。