论文部分内容阅读
球团厂钢球磨煤制粉系统是多变量强耦合、时滞、非线性以及生产工况变化大的复杂对象,其自动控制问题一直是控制界关注的热点。基于粒子群算法具有对整个参数空间进行高效并行搜索的特点以及PID神经网络的自调节和自适应特性,设计了具有PID结构的多变量自适应神经网络控制器。PID神经网络解耦控制方法被用来消除回路之间的耦合,神经网络连接权值由粒子群算法进行学习优化。仿真研究表明所建模型和所提控制方法具有较好的控制品质、良好的自适应解耦能力和自学习功能。该控制策略可在大范围内克服系统的非线性和强耦合问题,具有很高的工程