论文部分内容阅读
如何学习有效的人脸特征表达是人脸识别的关键性问题。现有基于卷积神经网络(Convolutional Neural Networks,CNN)的人脸深度特征表达学习方法大多在人脸图像经过了有效检测和校正的情况下,能够获得优异的性能,而在复杂场景下其推广性和鲁棒性受到极大限制。对此,本文提出了结合CNN不同层信息的全变量建模人脸特征表达学习方法,将提取的人脸局部深度特征中所包含的差异信息按照子空间进行建模,有效聚合局部深度特征的同时得到人脸在低维子空间的特征表达(i Vector)。在IJB-A(IAR