论文部分内容阅读
The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are desirable for rechargeable metal-air batteries.In this work,N-doped porous hollow carbon spheres encapsulated with ultrafine Fe/Fe3O4 nanoparticles (FeOx@N-PHCS) were fabricated by impregnation and subsequent pyrolysis,using melamine-formaldehyde resin spheres as self-sacrifice templates and polydopamine as N and C sources.The sufficient adsorption of Fe3+ on the polydopamine endowed the formation of Fe-Nx species upon high-temperature carbonization.The prepared FeOx@N-PHCS has advanced features of large specific surface area,porous hollow structure,high content of N dopants,sufficient Fe-Nx species and ultrafine FeOx nanoparticles.These features endow FeOx@N-PHCS with enhanced mass transfer and considerable active sites,leading to high activity and stability in catalyzing ORR and OER in alkaline electrolyte.Furthermore,the rechargeable Zn-air battery with FeOx@N-PHCS as air cathode catalyst exhibits a large peak power density,narrow charge-discharge potential gap and robust cycling stability,demonstrating the potential of the fabricated FeOx@N-PHCS as a promising electrode material for metal-air batteries.This new finding may open an avenue for rational design of bifunctional catalysts by integrating different active components within all-in-one catalyst for different electrochemical reactions.