论文部分内容阅读
设H为复的无限维可分的Hilbert空间,B(H)为H上的有界线性算子的全体。若σ(T)/σw(T)=π00(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,π00(T)表示谱集中孤立的有限重特征值的全体。首先给出了Hilbert空间上有界线性算子WeylKato分解的定义,并由Weyl-Kato分解的性质定义了一种新的谱集,利用该谱集刻画了算子函数演算满足Weyl定理的充要条件。