论文部分内容阅读
针对一维波动方程提出了一种有限差分方法.首先,采用泰勒级数展开公式和原方程代入的方法推导出了第一个时间层未知函数值的四阶紧致差分格式.然后,用四阶紧致差分公式近似空间导数项,采用中心差分格式截断误差余项修正的方法处理时间导数项,推导出了第二个时间层以后未知函数的四阶紧致差分格式.该方法时间和空间具有整体四阶精度.利用Fourier方法分析了所提格式的稳定性.由于本文格式在未知时间层仅涉及3个网格点,因此可采用追赶法求解离散化后所得到的线性方程组.最后,用数值算例验证了本文格式的精确性和稳定性.