论文部分内容阅读
提出一种基于人工神经网络的城市交通信号的自校正预测控制方法.充分考虑相邻交叉路口之间交通流的强耦合性,在此基础上建立关于队长的交通模型;其中,受控路口下一周期到达的车辆数用人工神经网络(ANN)来预测;通过该ANN还可获得确定最佳周期长度所需要的交通参量,因此还可预测下一周期的长度;上述预测值均用实测信息进行反馈校正,在此基础上即可给出带约束的预测控制算法,从而确定下一周期的控制策略.仿真实例表明该方法具有较好的控制效果.