基于CNN的车牌识别系统

来源 :中南民族大学学报(自然科学版) | 被引量 : 0次 | 上传用户:wlc198812
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对现有的车牌识别系统在遇到复杂条件,例如暗光、遮挡、多车牌、能见度低等情况时,难以有效地定位并识别车牌,提出了一种基于卷积神经网络的车牌自动识别系统.在车牌定位阶段综合应用3种定位方式对车牌进行初步定位检测,然后使用CNN模型对检测到的候选车牌进行判断;在车牌字符识别阶段,将分割出的字符输入到设计好的卷积神经网络模型中进行训练,得到的输出结果即为识别的车牌字符.在5906张车牌图像和非车牌图像以及36261张字符图片上的实验结果表明:提出的车牌识别系统对车牌和字符的识别率分别达到了94%和96.4%,明显优于传统的车牌识别方法,具有极高的实用性,可以满足绝大多数场景的使用需求.
其他文献
川西林盘是集生态、生产和生活于一体的复合型农村聚落形式,是蜀地人民与自然互动的产物,是几千年川西农耕文明的结晶。川西林盘文化的生成和演化,受地理环境、经济生产、社
车牌字符识别是智能车牌识别系统中的重要组成部分。针对车牌字符类别多、背景复杂影响正确识别率的问题,提出了一种基于卷积神经网络(CNN)的车牌字符识别方法。首先对车牌字