论文部分内容阅读
Magnetic fields parallel to the electrodes were introduced during a pulse plating process to obtain cobalt thin films from alkaline baths. Ef-fects of different magnetic intensities on the composition, microstructure, and magnetic properties of cobalt thin films were investigated. It was found that the deposition speed increased gradually with the increase of magnetic intensity. Almost all of the deposited films were crys-talline and showed Co(002), Co(100) peaks. With the rise on the magnetic intensity, the intensity of Co (002) peak raised gradually. Mag-netic fields would induce cobalt growing along (002) orientation. The films were densely covered with typical nodular structure. Films of smaller grain size and smooth surface could be formed under high magnetic intensity (1 T) as a result of magnetic force and MHD effects. Moreover, higher magnetic intensity induced larger saturation magnetization and lower coercivity. With the rise on magnetic intensity, cobalt contents in the films increased gradually, which led to the rise of saturation magnetization.
Magnetic fields parallel to the electrodes were introduced during a pulse plating process to obtain cobalt thin films from alkaline baths. It was found that the Almost all of the deposited films were crys-talline and showed Co (002), Co (100) peaks. With the rise on the magnetic intensity, the intensity of Co (002) peak The films were densely covered with a typical nodular structure. Films of smaller grain size and smooth surface could be formed under high magnetic intensity (1 T) as a result of magnetic force and MHD effects. Moreover, higher magnetic intensity induced larger saturation magnetization and lower coercivity. With the rise on magnetic intensity, cobalt contents in the film s increased gradually, which led to the rise of saturation magnetization.