论文部分内容阅读
针对云粒子群算法(CPSO)在电力系统无功优化中易陷入局部极值,也存在早熟收敛问题,将基于云数字特征(期望值、熵值、超熵值)编码的云粒子群算法进行了改进:依据解空间的变换将局部搜索和全局搜索相结合,用正态云算子实现粒子的进化学习和交叉变异操作。改进的算法在时间、存储量性能上有了明显的提高,将改进后的算法应用到IEEE30节点标准测试系统和电网中进行仿真运算,与其它算法进行比较。结果表明,该方法在配电网无功优化中能取得更好的全局最优解,加快了收敛速度,提高了收敛精度。