论文部分内容阅读
不同于现有的云平台和并行计算机等多任务处理方式,文中充分挖掘粒子群算法(PSO)的“隐”并行性,引入2种不同的信息交互策略——种群内信息交互和种群间信息交互,同时引入等级因子、标量因子和技能因子参数,在算法每次迭代过程中,始终让最合适的个体求解最合适的任务,提出信息交互多任务粒子群算法(IEPSOM).对于多任务函数优化问题、多任务多约束工程优化问题及多任务关键指标体系构建问题的测试表明,在IEPSOM多任务环境中,有效信息的传递不仅可以提高解的质量,还可以加速各任务的收敛速度.