论文部分内容阅读
分类是数据挖掘中重要的课题,为协调决策分类,提出了一种基于粗糙集理论和BP神经网络的数据挖掘的方法。在此方法中首先用粗糙集约简决策表中的冗余属性,然后用BP神经网络进行噪声过滤,最后由粗糙集从约简的决策表中产生规则集。此方法不仅避免了从训练神经网络中提取规则的复杂性,而且有效的提高了分类的精确度。