论文部分内容阅读
摘要:实现函数与方程的互相转化、接轨,以达到解决问题的目的。在高中数学的许多题中都有函数与方程思想的应用和体现,
关键词:函数 方程 思想方法
【中图分类号】G424 【文献标识码】A 【文章编号】
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。在高中数学的许多题中都有函数与方程思想的应用和体现,现就几个典型的立体加以赘述:
例1、 设不等式2x-1>m(x-1)对满足|m|≤2的一切实数m的取值都成立。求x的取值范围。
【分析】 此问题由于常见的思维定势,易把它看成关于x的不等式讨论。然而,若变换一个角度以m为变量,即关于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的问题。对此的研究,设f(m)=(x-1)m-(2x-1),则问题转化为求一次函数(或常数函数)f(m)的值在[-2,2]内恒为负值时参数x应该满足的条件。
【解】问题可变成关于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,设f(m)=(x-1)m-(2x-1),
则
解得x∈(,)
【注】 本题的关键是变换角度,以参数m作为自变量而构造函数式,不等式问题变成函数在闭区间上的值域问题。本题有别于关于x的不等式2x-1>m(x-1)的解集是[-2,2]时求m的值、关于x的不等式2x-1>m(x-1)在[-2,2]上恒成立时求m的范围。
一般地,在一个含有多个变量的数学问题中,确定合适的变量和参数,从而揭示函数关系,使问题更明朗化。或者含有参数的函数中,将函数自变量作为参数,而参数作为函数,更具有灵活性,从而巧妙地解决有关问题。
例2、设等差数列{a}的前n项的和为S,已知a=12,S>0,S<0 。
①.求公差d的取值范围; ②.指出S、S、…、S中哪一个值最大,并说明理由。
【分析】 ①问利用公式a与S建立不等式,容易求解d的范围;②问利用S是n的二次函数,将S中哪一个值最大,变成求二次函数中n为何值时S取最大值的函数最值问题。
【解】① 由a=a+2d=12,得到a=12-2d,所以
S=12a+66d=12(12-2d)+66d=144+42d>0,
S=13a+78d=13(12-2d)+78d=156+52d<0。
解得:- ② S=na+n(n1-1)d=n(12-2d)+n(n-1)d
=[n-(5-)]-[(5-)]
因为d<0,故[n-(5-)]最小时,S最大。由- 【注】 数列的通项公式及前n项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析或用函数方法来解决数列问题。也可以利用方程的思想,设出未知的量,建立等式关系即方程,将问题进行算式化,从而简洁明快。由次可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性。
例3、 设f(x)=lg,如果当x∈(-∞,1]时f(x)有意义,求实数a的取值范围。
【分析】当x∈(-∞,1]时f(x)=lg有意义的函数问题,转化为1+2+4a>0在x∈(-∞,1]上恒成立的不等式问题。
【解】 由题设可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,
即:()+()+a>0在x∈(-∞,1]上恒成立。
设t=(), 则t≥, 又设g(t)=t+t+a,其对称轴为t=-
∴ t+t+a=0在[,+∞)上无实根, 即 g()=()++a>0,得a>-
所以a的取值范围是a>-。
【注】对于不等式恒成立,引入新的参数化简了不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想。一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化。
在解决不等式()+()+a>0在x∈(-∞,1]上恒成立的问题时,也可使用“分离参数法”: 设t=(), t≥,则有a=-t-t∈(-∞,-],所以a的取值范围是a>-。其中最后得到a的范围,是利用了二次函数在某区间上值域的研究,也可属应用“函数思想”。
关键词:函数 方程 思想方法
【中图分类号】G424 【文献标识码】A 【文章编号】
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。在高中数学的许多题中都有函数与方程思想的应用和体现,现就几个典型的立体加以赘述:
例1、 设不等式2x-1>m(x-1)对满足|m|≤2的一切实数m的取值都成立。求x的取值范围。
【分析】 此问题由于常见的思维定势,易把它看成关于x的不等式讨论。然而,若变换一个角度以m为变量,即关于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的问题。对此的研究,设f(m)=(x-1)m-(2x-1),则问题转化为求一次函数(或常数函数)f(m)的值在[-2,2]内恒为负值时参数x应该满足的条件。
【解】问题可变成关于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,设f(m)=(x-1)m-(2x-1),
则
解得x∈(,)
【注】 本题的关键是变换角度,以参数m作为自变量而构造函数式,不等式问题变成函数在闭区间上的值域问题。本题有别于关于x的不等式2x-1>m(x-1)的解集是[-2,2]时求m的值、关于x的不等式2x-1>m(x-1)在[-2,2]上恒成立时求m的范围。
一般地,在一个含有多个变量的数学问题中,确定合适的变量和参数,从而揭示函数关系,使问题更明朗化。或者含有参数的函数中,将函数自变量作为参数,而参数作为函数,更具有灵活性,从而巧妙地解决有关问题。
例2、设等差数列{a}的前n项的和为S,已知a=12,S>0,S<0 。
①.求公差d的取值范围; ②.指出S、S、…、S中哪一个值最大,并说明理由。
【分析】 ①问利用公式a与S建立不等式,容易求解d的范围;②问利用S是n的二次函数,将S中哪一个值最大,变成求二次函数中n为何值时S取最大值的函数最值问题。
【解】① 由a=a+2d=12,得到a=12-2d,所以
S=12a+66d=12(12-2d)+66d=144+42d>0,
S=13a+78d=13(12-2d)+78d=156+52d<0。
解得:-
=[n-(5-)]-[(5-)]
因为d<0,故[n-(5-)]最小时,S最大。由-
例3、 设f(x)=lg,如果当x∈(-∞,1]时f(x)有意义,求实数a的取值范围。
【分析】当x∈(-∞,1]时f(x)=lg有意义的函数问题,转化为1+2+4a>0在x∈(-∞,1]上恒成立的不等式问题。
【解】 由题设可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,
即:()+()+a>0在x∈(-∞,1]上恒成立。
设t=(), 则t≥, 又设g(t)=t+t+a,其对称轴为t=-
∴ t+t+a=0在[,+∞)上无实根, 即 g()=()++a>0,得a>-
所以a的取值范围是a>-。
【注】对于不等式恒成立,引入新的参数化简了不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想。一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化。
在解决不等式()+()+a>0在x∈(-∞,1]上恒成立的问题时,也可使用“分离参数法”: 设t=(), t≥,则有a=-t-t∈(-∞,-],所以a的取值范围是a>-。其中最后得到a的范围,是利用了二次函数在某区间上值域的研究,也可属应用“函数思想”。