论文部分内容阅读
在基本人工鱼群算法的基础之上构建了用于解决连续变量空间分类规则提取的多群体人工鱼群算法,根据分类规则提取问题的特性设计了人工鱼的编码规则,并在此编码基础上定义了进行规则评价的适应值函数以及相关状态更新公式。为克服人工鱼群算法易陷入局部最优解的缺陷,引入了遗传算法中的交叉变异思想,设计了基于人工鱼的交叉及变异算子,提出了利用多种群交叉变异人工鱼群算法生成分类规则的算法思想。利用Iris和Wine数据集作为测试数据,结果表明:(1)该算法能够快速生成精度较高的分类规则;(2)在收敛效率及规则精度上全面优于基本