论文部分内容阅读
提出基于全局搜索(差分进化算法)和局部搜索(模式搜索)的混合型神经网络学习算法(DEPS),并采用查找逼近法对sigmoid函数进行优化。实验部分采用曲线逼近和纱线图片分类两个实验,并与基本差分进化算法(ODE)和可再生动态差分进化算法(RDDE)在算法效率和性能进行对比、验证,说明算法的有效性。最后对整型和浮点型神经网络进行速度测试比较,说明整型权值神经网络在计算速度上远远快于浮点型权值神经网络。经算法训练后的神经网络更适合于结构精简、速度快的嵌入式系统。