论文部分内容阅读
针对有背景干扰的番茄病理叶片,将k-means分割与迁移学习相结合,提出一种基于k-means分割和迁移学习的方法对番茄病害叶片进行识别。首先对原始图像进行一系列预处理,再将处理后的图像进行k-means分割,得到叶片边缘的最小矩阵图像,之后进行去噪处理,简化突出图像特征,再根据预处理后的图像特点,优化改进迁移的VGG16网络结构,构建CNN模型对预处理后图像进行识别。结果显示,通过分割后训练方式平均精度提升了0.37百分点,通过冻结迁移的VGG16网络第1个卷积模块并修改全连接层的方法提升了5.4