论文部分内容阅读
Magnetospheric global modeling is a method to link observations from distant regions via physical laws and has long played a unique and crucial role in space physics. It, different from computer simulations, represents the highest level of abstraction of the physical understanding of the processes that cause observed phenomena. It results in various specific models. While it appears in the form of cartoons, it is based on and has to be qualitatively consistent with physical laws. With the advancement of computer simulations, clues to the connection between physical laws and observation can be perceived much more easily than as ever before. However, computer simulation results are highly dependent on the used boundary conditions and numerical methods which may or may not represent the reality, even if the initial conditions are properly set. Therefore, simulations can easily mislead the investigations. Furthermore, a simulation result needs to be examined using diagnostic tools, such as field line tracing and streamline tracing programs. There are uncertainties in these diagnostic methods. The errors can be very large in certain areas under certain conditions. For example, a small error may link two different field lines or stream lines. The interpretations of the simulation results can be misled by these errors. The knowledge of global modeling can be useful in identifying the inconsistencies in the simulations and the flaws in the theoretical interpretation from the simulations. This review-tutorial article outlines the principles of the global modeling and discusses the successes and flaws of several global models.