论文部分内容阅读
欠定盲信道估计是欠定盲源分离的关键组成部分,其估计精度直接影响到源信号的估计精度.基于充分稀疏假设,在K均值聚类的基础上,提出一种新的欠定盲信道估计算法——K均值与主成分分析方法(KM-PCA算法).该算法首先对观测数据进行K均值聚类,然后对聚类分析结果分别进行主成分分析,修正其聚类中心,从而提高混叠矩阵的估计精度.采用语音信号进行的仿真实验表明,KM-PCA算法简单有效,估计精度优于传统的欠定盲信道估计算法.