论文部分内容阅读
针对受限玻尔兹曼机(RBM)面对大数据时存在模型训练缓慢的问题,设计了基于Hadoop的RBM云计算实现方法.针对RBM训练方法,改进了Hadoop任务消息通信机制以适应模型迭代周期短的特点;设计了MapReduce框架,包括Map端实现吉布斯采样,Reduce端完成参数更新;依据Hadoop任务组合方式,将RBM的训练应用于深度玻尔兹曼机(DBM)中.通过手写数字识别实验证明,该计算方法在大规模数据条件下能够有效加速RBM训练,且适应于深度学习模型的学习.