论文部分内容阅读
人脸识别技术在深度卷积神经网络(deep convolution neural networks,DCNN)的快速发展下取得了显著的成就。这些成果主要体现在更深层次的DCNN架构和更大的训练数据库。然而,由大多数私人公司持有的大型数据库(百万级)并不对外公开,即使当前部分开放的大型数据库,因为标注信息过少,无法保证精度,会影响DCNN的训练。本文提出了一种易于使用的多角度清理图像方法来提高数据的准确性:通过人脸检测算法清除掉无法检测到人脸的图像;在清理后的数据集上利用已有模型提取图像特征,并计算相似