论文部分内容阅读
在传统小脑模型的基础上,利用其特有的寻址方式,引入模糊逻辑的思想,采用模糊隶属度函数作为接受域函数,提出了一种模糊小脑模型神经网络。重点研究了接受域函数的映射规律、隶属度函数及其参数的选取规律和学习算法。仿真结果表明,该模糊模型具有良好的泛化能力和逼近精度,且可获得连续性强且有解析微分输出的复杂函数。