论文部分内容阅读
针对软子空间聚类算法搜寻聚类中心点容易陷入局部最优的缺点,提出在软子空间聚类框架下,结合量子行为粒子群优化(QPSO)和梯度下降法优化软子空间聚类目标函数的模糊聚类算法.根据QPSO全局寻优的特点,求解子空间中全局最优中心点,利用梯度下降法收敛速度快的特点,求解样本点的模糊权重和隶属度矩阵,最终获取样本点的最优聚类结果.在UCI数据集上的实验表明,文中算法可提高聚类精度和聚类结果的稳定性.