论文部分内容阅读
把后非线性混叠信号盲分离的分离系统用泛函连接网络来建模,对分离系统的输出应用高阶统计量独立性准 则作为测度,然后利用差分进化算法对泛函连接网络的权值进行学习,从而获得了一种后非线性混叠信号盲分离算法。 由于泛函连接网络是一种单层神经网络,具有学习参数少、收敛速度快和非线性逼近能力强的特点;而差分进化算法 控制参数少、易于选择、具有全局寻优能力和快速的收敛特性;因而与其它的后非线性混叠信号盲分离方法相比,该 文提出的分离算法具有计算简单、收敛速度快、较高的精度和稳定性好的特点。仿真结果显示了这种方法是