【摘 要】
:
数列通项公式的求解是数列的基础问题,在高考中也是重要的考查内容.新一轮课程改革背景下,提高学生的数学学科核心素养成为课程与教学的重要部分,而数列的知识可以有力的培养学生的逻辑推理、数学运算和数学抽象等核心素养,数列解题过程也常常含有转化法、待定系数法和类比法等数学思想方法,因此数列知识成为高考重点考察内容之一.在学习过程中,也应该对这部分内容给予高度重视.本文结合具体题目分析解题思路,给出求解数列通项公式的几种常见途径,旨在更好的解决数列通项公式问题.
论文部分内容阅读
数列通项公式的求解是数列的基础问题,在高考中也是重要的考查内容.新一轮课程改革背景下,提高学生的数学学科核心素养成为课程与教学的重要部分,而数列的知识可以有力的培养学生的逻辑推理、数学运算和数学抽象等核心素养,数列解题过程也常常含有转化法、待定系数法和类比法等数学思想方法,因此数列知识成为高考重点考察内容之一.在学习过程中,也应该对这部分内容给予高度重视.本文结合具体题目分析解题思路,给出求解数列通项公式的几种常见途径,旨在更好的解决数列通项公式问题.
其他文献
在初中物理教学中,为了使学生能够快速解决学习中遇到的各种难题,让其能够熟练掌握一定的解题方法是非常有必要的.而“数形结合”法就是较为常见的方法之一.运用这一方法就可以把复杂问题变得简单化,简捷化,从而大大提高了学习物理的效率,同时对于学生提高物理的解题能力显得也就尤为重要.
函数思想是高中数学问题解答的基本思想,函数相关问题的考核形式多样.当函数当中含有未知参数时,要求能够对基本函数概念进行理解,探究并归纳出该类问题的解答思路.
本文通过数形结合的方式“可视化”地展现了一类解三角形问题中的最值问题:当三角形的一边(a)及其对角(A)为定值时,另外两边(b、c)的线性组合:b+λc存在最大值的条件为:λ ∈(1/|cosA|,|cosA|).
文章把文献[1]中的一个推广结论中的指数从正整数扩充到正有理数,得到它的一个进一步推广,并从命题的证明中总结出解决一类函数最值问题的一般方法.
本文对一道质量预测试题中的椭圆问题进行探究,得到了一类斜率乘积为定值条件下的五个一般性结论.
为促进学生对导数知识的深度掌握及相关题目的高效解答,通过从导数概念的分析与理解入手,要求学生在熟练识记常见初等函数导数、导数运算法则的基础上进一步做到灵活变通,充分利用函数所具备的单调性、相关性进行探讨,实现学生对导数的解题方法做到活学活用,形成良好的数学思维习惯.
为切实帮助学生提高关于高中数学中导数综合型题目的解答效率,选取较为典型的题目进行引导分析,从定义域结合、单调性判定及图形思维运用等多角度展开探究,促进学生对于导数性质的深入理解,培养其形成科学合理的解题技巧,并通过平时做题的训练要求学生多注重题目问题与已知条件之间的内在联系,实现学生对导数综合型题目的轻松求解.
高考数学压轴题,是高考数学中最具创新性和思维挑战性的试题,洛必达法则是高等数学中求极限的重要方法.先对不定式极限作了简介,然后从洛必达法则的视角,对近年高考数学中的含参数导数压轴题进行了分析.
数学课本中的例题是探究数学解题方法的示范,挖掘课本例题的思想方法,可以帮助相关问题的解决.本文通过一道课本例题的解法探究,主要目的一是温馨提醒同仁重视课本例题的解法探究;二是探究解决形如f(x)√√=ax+b+cx+d的一类无理函数值域(最值)问题的思想方法[1].
解析几何解答题是高考数学的重点题型.通过对2020年全国Ⅰ卷理科数学第20题的变式探究,可引导学生从特殊到一般,强化解析几何的通性通法.通过一题多解,多题一解,多解归一,有利于学生提高从数学角度发现和提出问题的能力、分析和解决问题的能力,发展数学抽象、逻辑推理、直观想象、数学运算等核心素养.