论文部分内容阅读
本文提出一种基于深度学习的识别方法用于医用塑瓶气泡、积料等生产缺陷的实时检测,设计工业现场的视觉检测硬件平台,细述积料与气泡检测算法的原理,简述算法检测前的图像预处理。在Pytorch框架下通过Res Net系列算法与MobilenetV2算法的正交实验对积料检测实时性能进行比较,同时优化RetinaNet网络在气泡上的检测性能。在生产现场中该方法关于积料的平均检测精度为99. 7%,单幅图片检测时间为29. 7 ms;气泡的F_β指数为99. 5%,单幅图片检测时间为35. 5 ms,达到企业生产