论文部分内容阅读
作为网络化仿真中新的应用需求,如何动态地把散布在网络上各种服务整合起来以形成新的、满足不同用户需求的仿真任务共同体(STC)成为了当前研究热点。提出了一种基于粒子群优化(PSO)算法的仿真服务选择方法,针对传统PSO易陷入局部最优和收敛速度慢等不足,设计了一种惯性权重动态变化策略和一种可选的变异操作方法。该算法不仅能提高服务选择收敛速度,还能避免算法陷入局部最优。通过实验,采用典型函数进行了测试,并详细介绍了算法在STC服务选择上的实际运用,说明了算法的可行性和有效性。